Escalas: pasar de la fórmula absoluta a la relativa y viceversa

Objetivo: dada una escala en forma absoluta, ser capaz de expresarla relativamente y viceversa.

A la hora de aprender una determinada escala conviene que hagamos el esfuerzo en aprender tanto su fórmula absoluta como la relativa. El proceso de interiorización será mucho más rápido cuando contemplemos la escala desde ambas perspectivas, como veremos.

Propongo para hoy una serie de ejercicios de conversión: dada la fórmula absoluta calcularemos la relativa y, al contrario, partiendo de la fórmula relativa determinaremos la absoluta.

Ejercicio 1

La escala Lidia tiene por fórmula absoluta:

T – T – T – S – T – T – S

¿Cuál es su fórmula relativa?

Seguiremos el siguiente procedimiento:

1) Calcularemos las notas partiendo de Do como tónica.

2) Compararemos las notas resultantes con la escala de Do mayor.

Comenzamos por el primer paso (si tienes problemas calculando tonos y semitonos, revisa los primeros artículos de la categoría Teoría Musical):

Do + T = Re
Re + T = Mi
Mi + T = Fa#
Fa# + S = Sol
Sol + T = La
La + T = Si

Si + S = Do –> Tendríamos un problema si no hubiéramos terminado nuevamente en Do

Comparemos ahora ambas escalas:

Do mayor –> Do – Re – Mi – Fa – Sol – La – Si
Do lidia –> Do – Re – Mi – Fa# – Sol – La – Si

Todas las notas son idénticas, a excepción del cuarto grado, que está sostenido.

La fórmula relativa es, por lo tanto:

Lidia –> 1 – 2 – 3 – #4 – 5 – 6 – 7

Ejercicio 2

La escala menor armónica tiene por fórmula absoluta

T – S – T – T – S – X – S

Determinar la fórmula relativa.

Calculemos las notas partiendo desde Do. Ten en cuenta que con la X estoy designando un intervalo de tono y medio (tres semitonos).

Do + T = Re
Re + S = Mib
Mib + T = Fa
Fa + T = Sol
Sol + S = Lab
Lab + X = Si
Si + S = Do

Comparamos Do mayor con Do menor armónica:

Do mayor –> Do – Re – Mi – Fa – Sol – La – Si
Do menor armónica –> Do – Re – Mib – Fa – Sol – Lab – Si

Todo igual a excepción del tercer y sexto grado, que son bemoles.

Menor armónica –> 1 – 2 – b3 – 4 – 5 – b6 – 7

La operación inversa tampoco entraña ningún misterio.

Ejercicio 3

La escala mixolidia tiene por fórmula relativa

1 – 2 – 3 – 4 – 5 – 6 – b7

¿Cuál es su expresión absoluta?

El procedimiento es el contrario del anterior:

1) Calcularemos las notas comparando la escala con Do mayor.

2) Determinaremos a mano la distancia entre cada nota y la siguiente.

Puesto que sabemos la fórmula relativa, las notas de la escala con tónica en Do son inmediatas:

Do mixolidia –> Do – Re – Mi – Fa – Sol – La – Sib

Observa que hemos hecho bemol el séptimo grado.

Las distancias entre cada par de notas consecutivas son:

Do – Re –> T
Re – Mi –> T
Mi – Fa –> S
Fa – Sol –> T
Sol – La –> T
La – Sib –> S

y, para cerrar, la distancia de la vuelta a Do

Sib – Do –> T

Recopilamos todas esas distancias, obteniendo la fórmula absoluta de la escala mixolidia:

Mixolidia –> T – T – S – T – T – S – T

Ejercicio 4

La escala Dórica b2 tiene por fórmula relativa

Dórica b2 –> 1 – b2 – b3 – 4 – 5 – 6 – b7

¿Cuál es la fórmula absoluta?

Utilizando la fórmula, la escala Do dórica b2 es:

Do dórica b2 –> Do – Reb – Mib – Fa – Sol – La – Sib

Calculemos las distancias:

Do – Reb –> S
Reb – Mib –> T
Mib – Fa –> T
Fa – Sol –> T
Sol – La –> T
La -Sib –> S
Sib – Do –> T

Dórica b2 –> S – T – T – T – T – S – T

Aritmética simple.

Asegúrate de comprender estos ejemplos, te ayudarán a seguir sin problemas la exposición sistemática de escalas que comenzaremos en breve.

Javier Montero Gabarró


Escalas: pasar de la fórmula absoluta a la relativa y viceversa


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta


Índice completo de artículos sobre armonía.

La fórmula relativa de una escala musical

Objetivo: presentar la fórmula relativa y su utilidad práctica para el conocimiento de las diversas escalas musicales.

En un artículo anterior definimos la fórmula absoluta de una escala como aquella que indicaba su composición relacionando cada grado con el anterior. Conocida la fórmula absoluta, la determinación de los grados que constituyen la escala era una cuestión de aritmética simple, como ilustramos en los ejemplos prácticos.

Pero hay más maneras de referirnos a la estructura de una escala musical. La fórmula relativa, que explicaremos a continuación, es esencial para tener una visión clara de cómo es una escala, facilitando además su memorización.

Comencemos por nuestra querida escala mayor en su expresión más sencilla: Do mayor

Do – Re – Mi – Fa – Sol – La – Si – Do

en la que Do es el primer grado, Re el segundo, Mi el tercero, y así sucesivamente.

Indiquemos estos grados por sus números:

1 – 2 – 3 – 4 – 5 – 6 – 7 – 8

Voy a elegir ahora otra escala. Por ejemplo, imagina que te digo que la escala Do lidia está compuesta por las siguientes notas:

Do lidia –> Do – Re – Mi – Fa# – Sol – La – Si – Do

Vamos a comparar ahora Do lidia con Do mayor, grado a grado:

Do – Re – Mi – Fa – Sol – La – Si

Do – Re – Mi – Fa# – Sol – La – Si

Si observas ambas escalas, te darás cuenta de que todos los grados de la escala lidia son los mismos que la de la escala mayor, salvo el cuarto grado, que en aquella es Fa# y en esta Fa natural.

Esto lo podemos indicar así, aumentando un semitono el cuarto grado:

1 – 2 – 3 – #4 – 5 – 6 – 7

Esta es precisamente la fórmula relativa de la escala Lidia y con ella veremos que podremos calcular sus notas en cualquier tonalidad.

La denominamos relativa porque resulta de una comparación con otra escala: la escala mayor. Más adelante veremos que, en ocasiones, resulta útil conocer también la fórmula relativa respecto a otras escalas además de la mayor. Pero, de momento, cuando no matice nada concreto, siempre que me refiera a la fórmula relativa, me estaré refiriendo a la fórmula relativa a la escala mayor.

Quiero recalcar una vez más la cuestión de la terminología. Hay otros músicos que emplean unos términos distintos para referirse a lo mismo, pero, independientemente del sistema al que te adhieras, lo realmente importante es comprender los conceptos que subyacen.

Un nuevo ejemplo: la escala Do menor natural tiene las siguientes notas:

Do menor natural –> Do – Re – Mib – Fa – Sol – Lab – Sib – Do

¿Cuál es la fórmula relativa de la escala menor natural?

Si comparas uno a uno todos los grados respecto a Do mayor, observarás que coinciden todos excepto el tercero, sexto y séptimo, que son bemoles. Por lo tanto, la fórmula relativa es:

Menor natural –> 1 – 2 – b3 – 4 – 5 – b6 – b7

Ya sabes lo que son, entonces, las fórmulas absoluta y relativa de una escala. En el próximo artículo de esta serie realizaremos numerosos ejemplos prácticos variados que te ayudarán a afianzar estos importantes conceptos.

Javier Montero Gabarró


La fórmula relativa de una escala musical


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta


Índice completo de artículos sobre armonía.

La fórmula absoluta – Ejercicios prácticos de escalas

Objetivo: practicar la metodología de construcción de escalas a partir de su fórmula absoluta.

Cuando conoces la fórmula de una escala, sea la absoluta o la relativa (que trataremos proximamente), es muy sencillo identificar qué notas la constituyen. Es un mero ejercicio de suma aritmética que ya ilustramos en su día con el cálculo de las notas de la escala mayor en cualquier tonalidad.

En el artículo de hoy practicaremos estos conceptos con tres escalas de ejemplo, como pueden ser Fa mixolidia, La pentatónica menor y Sol lidia b7.

Voy a escribirte la fórmula absoluta de las tres, pero no es cuestión ahora de que me preguntes de dónde las saco. A su debido momento trataré una a una cada escala y todo se aclarará. El objetivo ahora no es que retengas sus fórmulas ni que comprendas su origen, sino que sepas calcular las notas que la integran a partir de la fórmula.

Comencemos por la primera de ellas: Fa mixolidia.

La fórmula absoluta de una escala mixolidia (ya sabes, acto de fe) es:

T – T – S – T – T – S – T

donde ya sabes que la S se corresponde a un semitono y la T a un tono (dos semitonos).

A la hora de contar debes tener dos puntos presentes:

1) Entre dos notas consecutivas naturales siempre hay un tono, a excepción de entre MI-FA y SI-DO, entre las que hay un sólo semitono. Si tienes problemas, no dudes en acompañarte con la imagen de un teclado en el piano, tal como está ilustrado en los enlaces anteriores.

2) Si tenemos que elegir entre una alteración de sostenido o bemol (por ejemplo, La# o Sib, que se corresponden al mismo sonido), elegiremos aquella que no repita un nombre en la escala. Lo verás claro en este ejemplo.

Comenzamos partiendo de la tónica de la escala, Fa en este caso:

Fa

La siguiente nota está a un tono de ella luego es Sol. Si tienes problemas en esto, ya sabes, échale un vistazo al teclado del piano y observa la nota negra que hay entre Fa y Sol.

Fa – Sol

La siguiente, de acuerdo a la fórmula, está a un tono nuevamente de la anterior:

Fa – Sol – La

Ahora un semitono. Un semitono por encima de La es La#, que es enarmónica de Sib. Puesto que el nombre La ya ha sido utilizado, debemos optar por Si bemol.

Fa – Sol – La – Sib

Turno para un nuevo tono:

Fa – Sol – La – Sib – Do

Y otro más:

Fa – Sol – La – Sib – Do – Re

Seguido de un semitono. ¿Cual elegimos, Re# o Mib? El segundo, pues de lo contrario repetiríamos Re:

Fa – Sol – La – Sib – Do – Re – Eb

Y finalmente un tono. El último es siempre de comprobación. Si no nos hemos equivocado en las cuentas deberemos aterrizar nuevamente en la tónica:

Fa – Sol – La – Sib – Do – Re – Eb – Fa

Ya tenemos nuestra escala Fa mixolidia. Prueba a calcular las notas en otra tonalidad diferente.

El segundo ejemplo es La menor pentatónica. Esta escala introduce una novedad, pues es de sólo 5 notas en vez de las 7 habituales. Por eso recibe el nombre de pentatónica.

Su fórmula absoluta es:

X – T – T – X – T

No me he equivocado. He escrito dos X.

La cuestión es que la distancia entre el primer y segundo grado de la escala no es ni de un tono ni de un semitono, sino de tono y medio (tres semitonos). Para representar esta distancia más amplia he elegido la letra X. Una observación: si te has leído los artículos de cálculo de intervalos, ya sabrás que un tono y medio es la distancia de una tercera menor.

Empezamos:

La

Hay que calcular un tono y medio por encima de La. Hagámoslo en dos partes, comenzando por el tono y luego agregando el semitono que falta. Un tono por encima de La es Si. Un semitono por encima de Si es Do (recuerda que no hay nota negra entre Si y Do).

La – Do

Vayamos ahora rápido para las dos notas siguientes: T – T

La – Do – Re – Mi

Nos encontramos nuevamente el tono y medio: un semitono por encima de Mi está Fa (no hay negra entre medias). Un tono por encima de Fa está Sol:

La – Do – Re – Mi – Sol

Ya están las cinco notas de la escala. La sexta vuelve a ser la tónica. Comprobemos que no nos hemos equivocado en las cuentas: un tono por encima de Sol es La:

La – Do – Re – Mi – Sol – La

Veamos ahora Sol lidia b7.

La escala lidia b7, uno de los modos de la escala menor melódica (esto te lo digo para ir abriendo boca), tiene por fórmula absoluta:

T – T – T – S – T – S – T

Dejo que calcules tú mismo las notas. ¿Te sale lo siguiente?

Sol – La – Si – Do# – Re – Mi – Fa – Sol

Si es así, enhorabuena, tienes esto dominado.

Javier Montero Gabarró


La fórmula absoluta – Ejercicios prácticos de escalas


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta


Índice completo de artículos sobre armonía.

La fórmula absoluta de una escala musical

Ha llegado el momento de que comencemos a sumergirnos en el fascinante mundo de las escalas musicales. ¿Te suena a chino si te pregunto por una escala Dórica o por una Lidia b7? ¿Te pierdes cuando te «sacan» de una pentatónica menor?

No te preocupes. En los próximos artículos iremos desentrañando gradualmente todos los misterios de la construcción de escalas. Como suele suceder con casi todo, te darás cuenta de que el asunto es mucho más sencillo de lo que aparenta. Los más temidos fantasmas se desvanecen cuando los iluminas.

Pero antes necesitamos algo de terminología y hoy quiero presentarte el concepto de fórmula absoluta de una escala (en oposición al de fórmula relativa, que trataremos más adelante). Una advertencia: esta terminología es la que yo utilizo y emplearé coherentemente a lo largo de toda la serie; no tiene por qué coincidir con la usada por otros músicos. Lo realmente importante es que sepamos de qué estamos hablando más que el nombre que empleemos para referirnos a ello.

Aunque, eventualmente, podré usar los nombres de las notas propias de nuestro sistema musical (Do, Re, Mi…), recurriré con frecuencia a la notación anglosajona por cuestiones de comodidad. En caso de dudas no estaría mal que hicieras clic sobre el enlace para refrescar conceptos.

Realmente, ya sabes lo que es fórmula absoluta de una escala. Te la presenté en el artículo La fórmula secreta de la escala mayor, que te recomiendo que releas antes de seguir. Cuando hablo de fórmula absoluta, me estoy refiriendo precisamente a esa fórmula secreta.

Una fórmula absoluta de una escala no es más que aquella en la que se detalla la distancia en semitonos de cada grado respecto al anterior.

Antes de que alguien me conteste que, si estamos relacionando cada grado relativamente con el anterior, deberíamos llamarla fórmula relativa, diŕe que, evidentemente, es cierto. No obstante, el absolutismo al que me refiero es que no comparo esa escala con ninguna otra, sino simplemente miro en sí misma. Me reservo el término fórmula relativa para cuando estemos comparando dos escalas entre sí. Pero todo a su momento…

Entonces, ya sabes tu primera fórmula absoluta: la de la escala mayor:

Escala mayor: T – T – S – T – T – T – S

que también podrías escribir como:

2 – 2 – 1 – 2 – 2 – 2 – 1

En la que el 1 hace referencia al semitono y el 2 al tono, puesto que un tono son dos semitonos.

Lo fascinante de todo esto es que, conocida la fórmula de una escala, puedes conocer su composición en cualquier tonalidad sin más que realizar un conteo básico de tonos y semitonos. Léete el artículo antiguo La escala mayor en cualquier tonalidad, en el que se detalla todo el proceso aplicado a un tipo de escala en particular: la escala mayor.

Ya has dado el primer paso. Te aseguro que el camino será llano y sin baches, pero tendrás que ir asimilando cada artículo gradualmente. Merece la pena: conocer lo que hay detrás de las escalas, al igual que de los acordes, cambia radicalmente la forma en la que te relacionas con la música y con los demás músicos.

Javier Montero Gabarró


http://elclubdelautodidacta.es/wp/2012/05/la-formula-absoluta-de-una-escala-musical/


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies