El mundo de las tonalidades relativas

Objetivo: aclarar el concepto de tonalidades relativas y aprender a calcularlas.

Echa un vistazo a las escalas Do mayor y La menor natural. ¿Qué tienen en común?

Do mayor: DO – RE – MI – FA – SOL – LA – SI – DO

La menor natural: LA – SI – DO – RE – MI – FA – SOL – LA

Son las mismas notas, solo que la secuencia comienza en un punto diferente.

Una pieza escrita en la tonalidad de Do mayor tiene la misma armadura que otra escrita en la tonalidad de La menor. Decimos que Do mayor y La menor son tonalidades relativas.

La escala La menor natural es la relativa menor de Do mayor, del mismo modo que Do mayor es la relativa mayor de La menor natural.

El hecho de que ambas escalas compartan las mismas notas no es algo que deba sorprendernos, pues la escala menor natural es uno de los modos de la escala mayor: el modo eólico. Todos los modos comparten las mismas notas; lo único que cambia es la nota en la que se inicia la secuencia.

Forma parte del bagaje de conocimientos de todo músico conocer de memoria las relativas menores de cada tonalidad mayor. Vamos a mostrar aquí cómo calcularlas.

Hemos dicho que la relativa de Do mayor es La menor. ¿Qué distancia hay entre Do y La?

Se trata de una sexta mayor, compuesta de 9 semitonos.

De este modo, podemos concluir que la relativa menor de una tonalidad mayor cualquiera se encuentra una sexta mayor por encima de esta.

[Si no sabes lo que es una sexta mayor o si no manejas con agilidad los intervalos, te recomiendo te leas los siete artículos del blog (tres teóricos y cuatro prácticos) dedicados al cálculo de intervalos.]

Ahora bien, en vez de buscar el LA que tenemos por delante de DO, a una sexta mayor, podemos recurrir al LA que hay por detrás, a una tercera menor (3 semitonos). Es más rápido contar tres semitonos hacia atrás que nueve hacia adelante.

Realicemos algunos ejemplos:

1) ¿Cuál es la relativa menor de Sol mayor?

Contamos tres semitonos hacia atrás:

SOL – SOLb/FA# (1) – FA (2)- MI (3)

La relativa menor de Sol mayor es, por lo tanto, Mi menor.

2) ¿Cuál es la relativa menor de La mayor?

Contamos tres semitonos hacia atrás:

LA – LAb/SOL# (1) – SOL (2) – SOLb/FA# (3)

¿Con cuál de las dos opciones nos quedamos, SOL bemol o FA sostenido?

Aunque ambas notas son enarmónicas, la respuesta correcta solo es una. Hemos dicho que ha de estar una TERCERA por detrás:

LA – SOL – FA

La relativa menor de LA mayor es, por lo tanto, FA# menor.

El ejercicio contrario, calcular la relativa mayor dada la tonalidad menor, no tiene más misterio que calcular una tercera menor hacia adelante.

3) ¿Cuál la relativa mayor de Sol menor?

Contamos tres semitonos hacia adelante:

SOL – SOL#/LAb (1) – LA (2) – LA#/SIb (3)

¿Con cuál nos quedamos, LA sostenido o SI bemol?

Nuevamente, la respuesta nos la da el hecho de que tiene que tratarse de una tercera.

SOL – LA – SI.

La relativa mayor de SOL menor es, por lo tanto, SI bemol mayor.

La tabla siguiente relaciona cada tonalidad con su relativa:

MAYOR MENOR
C A
C#/Db A#/Bb
D B
D#/Eb B#/C
E C#
F D
F#/Gb D#/Eb
G E
G#/Ab E#/F
A F#
A#/Bb Fx/G
B G#

Es importante que sepas calcular las tonalidades relativas y que, poco a poco, vayas memorizándolas, pues es algo a lo que, como músico, tendrás que recurrir con frecuencia.

Por ejemplo: el proceso de aprendizaje e interiorización de escalas es laborioso y requiere meses o incluso años de estudio. Un guitarrista puede dominar ya las diversas formas de la escala mayor y estar aprendiendo la escala menor. Entre tanto, puede salir del paso si conoce las tonalidades relativas.

Imaginemos que un guitarrista tiene que improvisar en Do menor, pero no conoce las posiciones de la escala aún. Si sabe que Do menor tiene por relativa mayor Mi bemol mayor, podrá utilizar cualquiera de las posiciones de Mi bemol mayor para improvisar en Do menor, pues ambas escalas, al ser relativas, comparten las mismas notas.

Naturalmente, también podría buscar un Do, como el de la quinta cuerda en el tercer traste, subir tres semitonos, aterrizando en el Mi bemol del sexto traste y desde ahí utilizar una de las posiciones que conozca de Mi bemol mayor. Abundaremos en todo esto más adelante en la sección de guitarra del blog.

Javier Montero Gabarró


El mundo de las tonalidades relativas


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta


Índice completo de artículos sobre armonía.

Escalas: pasar de la fórmula absoluta a la relativa y viceversa

Objetivo: dada una escala en forma absoluta, ser capaz de expresarla relativamente y viceversa.

A la hora de aprender una determinada escala conviene que hagamos el esfuerzo en aprender tanto su fórmula absoluta como la relativa. El proceso de interiorización será mucho más rápido cuando contemplemos la escala desde ambas perspectivas, como veremos.

Propongo para hoy una serie de ejercicios de conversión: dada la fórmula absoluta calcularemos la relativa y, al contrario, partiendo de la fórmula relativa determinaremos la absoluta.

Ejercicio 1

La escala Lidia tiene por fórmula absoluta:

T – T – T – S – T – T – S

¿Cuál es su fórmula relativa?

Seguiremos el siguiente procedimiento:

1) Calcularemos las notas partiendo de Do como tónica.

2) Compararemos las notas resultantes con la escala de Do mayor.

Comenzamos por el primer paso (si tienes problemas calculando tonos y semitonos, revisa los primeros artículos de la categoría Teoría Musical):

Do + T = Re
Re + T = Mi
Mi + T = Fa#
Fa# + S = Sol
Sol + T = La
La + T = Si

Si + S = Do –> Tendríamos un problema si no hubiéramos terminado nuevamente en Do

Comparemos ahora ambas escalas:

Do mayor –> Do – Re – Mi – Fa – Sol – La – Si
Do lidia –> Do – Re – Mi – Fa# – Sol – La – Si

Todas las notas son idénticas, a excepción del cuarto grado, que está sostenido.

La fórmula relativa es, por lo tanto:

Lidia –> 1 – 2 – 3 – #4 – 5 – 6 – 7

Ejercicio 2

La escala menor armónica tiene por fórmula absoluta

T – S – T – T – S – X – S

Determinar la fórmula relativa.

Calculemos las notas partiendo desde Do. Ten en cuenta que con la X estoy designando un intervalo de tono y medio (tres semitonos).

Do + T = Re
Re + S = Mib
Mib + T = Fa
Fa + T = Sol
Sol + S = Lab
Lab + X = Si
Si + S = Do

Comparamos Do mayor con Do menor armónica:

Do mayor –> Do – Re – Mi – Fa – Sol – La – Si
Do menor armónica –> Do – Re – Mib – Fa – Sol – Lab – Si

Todo igual a excepción del tercer y sexto grado, que son bemoles.

Menor armónica –> 1 – 2 – b3 – 4 – 5 – b6 – 7

La operación inversa tampoco entraña ningún misterio.

Ejercicio 3

La escala mixolidia tiene por fórmula relativa

1 – 2 – 3 – 4 – 5 – 6 – b7

¿Cuál es su expresión absoluta?

El procedimiento es el contrario del anterior:

1) Calcularemos las notas comparando la escala con Do mayor.

2) Determinaremos a mano la distancia entre cada nota y la siguiente.

Puesto que sabemos la fórmula relativa, las notas de la escala con tónica en Do son inmediatas:

Do mixolidia –> Do – Re – Mi – Fa – Sol – La – Sib

Observa que hemos hecho bemol el séptimo grado.

Las distancias entre cada par de notas consecutivas son:

Do – Re –> T
Re – Mi –> T
Mi – Fa –> S
Fa – Sol –> T
Sol – La –> T
La – Sib –> S

y, para cerrar, la distancia de la vuelta a Do

Sib – Do –> T

Recopilamos todas esas distancias, obteniendo la fórmula absoluta de la escala mixolidia:

Mixolidia –> T – T – S – T – T – S – T

Ejercicio 4

La escala Dórica b2 tiene por fórmula relativa

Dórica b2 –> 1 – b2 – b3 – 4 – 5 – 6 – b7

¿Cuál es la fórmula absoluta?

Utilizando la fórmula, la escala Do dórica b2 es:

Do dórica b2 –> Do – Reb – Mib – Fa – Sol – La – Sib

Calculemos las distancias:

Do – Reb –> S
Reb – Mib –> T
Mib – Fa –> T
Fa – Sol –> T
Sol – La –> T
La -Sib –> S
Sib – Do –> T

Dórica b2 –> S – T – T – T – T – S – T

Aritmética simple.

Asegúrate de comprender estos ejemplos, te ayudarán a seguir sin problemas la exposición sistemática de escalas que comenzaremos en breve.

Javier Montero Gabarró


Escalas: pasar de la fórmula absoluta a la relativa y viceversa


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta


Índice completo de artículos sobre armonía.

La fórmula relativa de una escala musical

Objetivo: presentar la fórmula relativa y su utilidad práctica para el conocimiento de las diversas escalas musicales.

En un artículo anterior definimos la fórmula absoluta de una escala como aquella que indicaba su composición relacionando cada grado con el anterior. Conocida la fórmula absoluta, la determinación de los grados que constituyen la escala era una cuestión de aritmética simple, como ilustramos en los ejemplos prácticos.

Pero hay más maneras de referirnos a la estructura de una escala musical. La fórmula relativa, que explicaremos a continuación, es esencial para tener una visión clara de cómo es una escala, facilitando además su memorización.

Comencemos por nuestra querida escala mayor en su expresión más sencilla: Do mayor

Do – Re – Mi – Fa – Sol – La – Si – Do

en la que Do es el primer grado, Re el segundo, Mi el tercero, y así sucesivamente.

Indiquemos estos grados por sus números:

1 – 2 – 3 – 4 – 5 – 6 – 7 – 8

Voy a elegir ahora otra escala. Por ejemplo, imagina que te digo que la escala Do lidia está compuesta por las siguientes notas:

Do lidia –> Do – Re – Mi – Fa# – Sol – La – Si – Do

Vamos a comparar ahora Do lidia con Do mayor, grado a grado:

Do – Re – Mi – Fa – Sol – La – Si

Do – Re – Mi – Fa# – Sol – La – Si

Si observas ambas escalas, te darás cuenta de que todos los grados de la escala lidia son los mismos que la de la escala mayor, salvo el cuarto grado, que en aquella es Fa# y en esta Fa natural.

Esto lo podemos indicar así, aumentando un semitono el cuarto grado:

1 – 2 – 3 – #4 – 5 – 6 – 7

Esta es precisamente la fórmula relativa de la escala Lidia y con ella veremos que podremos calcular sus notas en cualquier tonalidad.

La denominamos relativa porque resulta de una comparación con otra escala: la escala mayor. Más adelante veremos que, en ocasiones, resulta útil conocer también la fórmula relativa respecto a otras escalas además de la mayor. Pero, de momento, cuando no matice nada concreto, siempre que me refiera a la fórmula relativa, me estaré refiriendo a la fórmula relativa a la escala mayor.

Quiero recalcar una vez más la cuestión de la terminología. Hay otros músicos que emplean unos términos distintos para referirse a lo mismo, pero, independientemente del sistema al que te adhieras, lo realmente importante es comprender los conceptos que subyacen.

Un nuevo ejemplo: la escala Do menor natural tiene las siguientes notas:

Do menor natural –> Do – Re – Mib – Fa – Sol – Lab – Sib – Do

¿Cuál es la fórmula relativa de la escala menor natural?

Si comparas uno a uno todos los grados respecto a Do mayor, observarás que coinciden todos excepto el tercero, sexto y séptimo, que son bemoles. Por lo tanto, la fórmula relativa es:

Menor natural –> 1 – 2 – b3 – 4 – 5 – b6 – b7

Ya sabes lo que son, entonces, las fórmulas absoluta y relativa de una escala. En el próximo artículo de esta serie realizaremos numerosos ejemplos prácticos variados que te ayudarán a afianzar estos importantes conceptos.

Javier Montero Gabarró


La fórmula relativa de una escala musical


El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)


El Club del Autodidacta


Índice completo de artículos sobre armonía.

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies