Objetivo: deducir los acordes que aparecen al armonizar la escala menor natural.
En el artículo de hoy armonizaremos la primera de las escalas menores por excelencia, la menor natural. Es decir, sobre cada grado de la escala apilaremos terceras sucesivas hasta construir acordes de tres y cuatro notas (tríadas y tétradas, respectivamente). Es exactamente lo mismo que hicimos cuando armonizamos la escala mayor.
Deduciremos los acordes de dos formas diferentes. En la primera, casi inmediata, aprovecharemos el hecho de que la escala menor natural no es sino un modo de la escala mayor (el modo eólico). Esto nos ahorrará tener que repetir los cálculos que en su día hicimos con la escala mayor. En la segunda realizaremos el trabajo a mano, agregando cada tercera y poniendo nombre a los acordes resultantes. Todo músico debe estar perfectamente familiarizado con este tipo de cálculos.
Comencemos recordando la formación del modo eólico.
Tomemos como referencia cualquier escala mayor; sin ir más lejos, por su obvia sencillez, DO mayor.
DO mayor: C – D – E – F – G – A – B
El modo eólico se obtiene partiendo del sexto grado utilizando las mismas notas. En nuestro ejemplo, el sexto grado es LA (A). Si construimos, con las mismas notas, la escala que comienza a partir de LA, obtenemos el modo eólico o escala menor natural:
LA eólica (menor natural): A – B – C – D – E – F – G
Conclusión que nos permitía calcular su fórmula relativa:
Eólica (menor natural): 1 – 2 – b3 – 4 – 5 – b6 – b7
De igual modo, si al armonizar DO mayor obteníamos
Armonización DO mayor (tríadas):
C – Dm – Em – F – G – Am – B°
Armonización DO mayor (tétradas):
Cmaj7 – Dm7 – Em7 – Fmaj7 – G7 – Am7 – Bm7(b5)
Comenzando por el sexto acorde (nota fundamental LA) obtendremos la armonización de LA eólica (LA menor natural):
Armonización LA menor natural (tríadas):
Am – B° – C – Dm – Em – F – G
Armonización LA menor natural (tétradas):
Am7 – Bm7(b5) – Cmaj7 – Dm7 – Em7 – Fmaj7 – G7
O bien, en términos generales, basándonos en la fórmula relativa de la escala menor natural:
Armonización de la escala menor natural (tríadas):
Im – II° – bIII – IVm – Vm – bVI – bVII
Armonización de la escala menor natural (tétradas):
Im7 – IIm7(b5) – bIIImaj7 – IVm7 – Vm7 – bVImaj7 – bVII7
A lo que quiero llegar con este desarrollo es que observes lo fácil que resulta recuperar estos acordes si los olvidas pero, en cambio, recuerdas los que aparecen al armonizar la escala mayor. Es cuestión de coger exactamente los mismos, pero comenzando en un punto diferente.
Repetiremos esta operación ahora, a modo de ejercicio, por el procedimiento habitual para armonizar escalas heptatónicas que ya empleamos sobre la escala mayor.
Partimos de la fórmula de la escala menor natural y la elaboramos sobre DO:
DO menor natural: C – D – Eb – F – G – Ab – Bb
Construyamos los acordes que aparecen al apilar terceras sobre cada grado.
Contar terceras es contar 1-2-3 sobre las notas de esa escala, incluyendo el punto de origen en la cuenta. Así, por ejemplo, en nuestra escala menor natural, una tercera sobre DO es MI bemol, sobre SOL es SI bemol, y sobre LA bemol es DO.
Empecemos por las tríadas:
Acorde sobre el primer grado: C – Eb – G
Acorde sobre el segundo grado: D – F – Ab
Acorde sobre el tercer grado: Eb – G – Bb
Acorde sobre el cuarto grado: F – Ab – C
Acorde sobre el quinto grado: G – Bb – D
Acorde sobre el sexto grado: Ab – C – Eb
Acorde sobre el séptimo grado: Bb – D – F
Date cuenta que, entre esas terceras, algunas son mayores (4 semitonos de distancia) y otras menores (tres semitonos). En función de cómo estén apiladas el acorde se denominará de un modo u otro.
Recordemos esto:
Tercera mayor + Tercera menor: Tríada mayor
Tercera menor + Tercera mayor: Tríada menor
Tercera menor + Tercera menor: Tríada disminuida
Tercera mayor + Tercera mayor: Tríada aumentada
Sólo hay que calcular intervalos:
C – Eb – G: 3 semitonos + 4 semitonos: Tercera menor + Tercera mayor: DO menor
D – F – Ab: Tercera menor + Tercera menor: RE disminuido
Eb – G – Bb: Tercera mayor + Tercera menor: MI bemol mayor
F – Ab – C: Tercera menor + Tercera mayor: FA menor
G – Bb – D: Tercera menor + Tercera mayor: SOL menor
Ab – C – Eb: Tercera mayor + Tercera menor: LA bemol mayor
Bb – D – F: Tercera mayor + Tercera menor: SI bemol mayor
He aquí, recopiladas, las tríadas resultantes:
Cm – D° – Eb – Fm – Gm – Ab – Bb
En términos generales, sobre cualquier tónica:
Im – II° – bIII – IVm – Vm – bVI – bVII
Resultado que coincide con el deducido más arriba.
También podríamos haber estudiado la composición de cada acorde comparando directamente cada grado obtenido con la fundamental. La primera tercera está a una tercera de la fundamental; la siguiente, a una quinta de esta.
Tercera mayor (4 semitonos) y Quinta justa (7 semitonos): Tríada mayor
Tercera menor (3 semitonos) y Quinta justa: Tríada menor
Tercera mayor y Quinta aumentada (8 semitonos): Tríada aumentada
Tercera menor y Quinta disminuida (6 semitonos): Tríada disminuida
El resultado habría sido el mismo (compruébalo si no has hecho este tipo de cálculos antes). Todas las quintas que aparecen son justas, a excepción de la que sucede sobre el segundo grado, que es disminuida.
Para calcular la versión tétrada de estos acordes apilaremos una tercera más sobre cada tríada obtenida:
Acorde sobre el primer grado: C – Eb – G – Bb
Acorde sobre el segundo grado: D – F – Ab – C
Acorde sobre el tercer grado: Eb – G – Bb – D
Acorde sobre el cuarto grado: F – Ab – C – Eb
Acorde sobre el quinto grado: G – Bb – D – F
Acorde sobre el sexto grado: Ab – C – E – G
Acorde sobre el séptimo grado: Bb – D – F – Ab
La mejor manera de poner nombre a estos acordes pasa por descubrir la naturaleza del último grado añadido. Si te das cuenta, al apilar sobre la fundamental en tríadas hemos obtenido: fundamental + tercera + quinta. El nuevo grado, a una tercera de la quinta, es la séptima del acorde.
Hay que empezar, entonces, averiguando qué tipo de séptima es. Recordemos los tres tipos de séptimas:
Séptima mayor: a 11 semitonos de la fundamental.
Séptima menor: a 10 semitonos de la fundamental
Séptima disminuida: a 9 semitonos de la fundamental
Podemos contar semitonos desde la fundamental de cada acorde. Pero más sencillo es hacerlo al revés, contando la distancia que separa la séptima con la siguiente aparición de la fundamental, la octava. Ambas distancias deben sumar doce.
La tabla anterior puede, entonces, expresarse del siguiente modo:
Séptima mayor: a un semitono de la octava (12 - 11 = 1)
Séptima menor: a dos semitonos de la octava (12 - 10 = 2)
Séptima disminuida: a tres semitonos de la octava (12 - 9 = 3).
Los acordes tétradas se denominan dependiendo de cúal sea la tríada base y la séptima agregada:
Tríada mayor y Séptima mayor: Acorde de séptima mayor: maj7
Tríada mayor y Séptima menor: Acorde de séptima: 7
Tríada menor y Séptima mayor: Acorde menor con séptima mayor: m(maj7)
Tríada menor y Séptima menor: Acorde menor séptima: m7
Tríada disminuida y Séptima menor: Acorde menor séptima b5 o semidisminuido: m7(b5)
Tríada disminuida y Séptima disminuida: Acorde de séptima disminuido: dim7
Tríada aumentada y Séptima mayor: Acorde aumentado con séptima mayor: +maj7
Tríada aumentada y Séptima menor: Acorde aumentado séptima: +7
Apréndete bien esta tabla; te ayudará a comprender de verdad lo que hay detrás de la construcción de acordes.
No todos estos tipos nos aparecerán ahora al armonizar la escala menor natural. Entrarán en escena, a su debido momento, cuando le metamos mano a otras escalas menores como la melódica o la armónica.
Volvamos a nuestras recién creadas tétradas y apliquemos lo expuesto arriba:
C – Eb – G – Bb: Tríada menor y Séptima menor (Bb está a dos semitonos de C): Cm7
D – F – Ab – C: Tríada disminuido y Séptima menor: Dm7(b5)
Eb – G – Bb – D: Tríada mayor y Séptima mayor (D está a un semitono de Eb): Ebmaj7
F – Ab – C – Eb: Tríada menor y Séptima menor: Fm7
G – Bb – D – F: Tríada menor y Séptima menor: Gm7
Ab – C – E – G: Tríada mayor y Séptima mayor: Abmaj7
Bb – D – F – Ab: Tríada mayor y Séptima menor: Bb7
Obteniendo así la armonización de DO menor natural:
Cm7 – Dm7(b5) – Ebmaj7 – Fm7 – Gm7 – Abmaj7 – Bb7
Generalizando a cualquier tónica:
Im7 – IIm7(b5) – bIIImaj7 – IVm7 – Vm7 – bVImaj7 – bVII7
Tal como obtuvimos empleando la primera metodología.
Es importante que te tomes tu tiempo en asimilar y practicar las técnicas que hemos expuesto hoy. Si algo no está del todo claro, asegúrate de que conoces bien otros conceptos como la nomenclatura de intervalos, la formación de escalas y la construcción de acordes. Todos estos temas han sido tratados ya en este blog con anterioridad.
Continuaremos esta serie armonizando otras escalas menores que aún nos quedan en el tintero, pero, ¿por qué no intentarlo tú mismo? Te he mostrado las técnicas y el material de referencia suficiente para poder hacerlo por tu cuenta. Demuéstrate que ya no me necesitas y aventúrate sin miedo. Los fantasmas no son tales cuando se les ilumina.
Javier Montero Gabarró
http://elclubdelautodidacta.es/wp/2014/01/armonizacion-de-la-escala-menor-natural/
El texto de este artículo se encuentra sometido a una licencia Creative Commons del tipo CC-BY-NC-ND (reconocimiento, no comercial, sin obra derivada, 3.0 unported)
El Club del Autodidacta
Índice completo de artículos sobre armonía.